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SUMMARY

One goal of this project is to develop arrays of multisite silicon-substrate electrodes, which should
allow placement of many more microstimulating sites within the human cochlear nucleus than is possible with
discrete iridium microelectrodes. We are developing and evaluating arrays that have 16 electrode sites
distributed along 4 silicon shanks extending from an epoxy superstructure that is 2.4 mm in diameter.

In the last quarter, we continued our evaluations of the capabilities of these silicon substrate arrays
implanted chronically in the cochlear nucleus of young adult cats. Here we report data from a terminal
experiment conducted in a cat in which the microstimulating array had been implanted in the cochlear nucleus
for 250 days. Response growth functions of the compound response evoked by the microstimulation in the
cochlear nucleus were recorded via an electrode implanted chronically near the rostro-medial pole of the
contralateral inferior colliculus. The thresholds and growth with stimulus amplitude were quite stable between
the 22" and 250™ day after array implantation, but there were indications of some ongoing movement of the
silicon shanks through the tissue, and this was confirmed at autopsy. The slow subsidence of the array in cat
153 and the more extensive dislocation of the array in cat 149 probably can be attributed to our method of
routing of the array cable, which has subsequently been redesigned.

In cat 153 we continued our evaluation of the capacity of the intranuclear microstimulating arrays to
access separate neuronal population over a range of stimulus amplitudes. Multiunit neuronal activity was
recorded in the central nucleus of the contralateral ICC using a 32-site silicon substrate probe. We generated
post-stimulus time (PST) histograms of the neuronal activity that was recorded at each of 16 sites in the ICC
and then generated contour (“topographic”) maps of the evoked neuronal activity from the set of 16 PST
histograms. Even at the highest stimulus amplitude used (30 pA) adjacent microstimulating sites in the
medial part of the CN separated by only 300 um induced neuronal activity in largely non-overlapping regions
along the dorsolateral-ventromedial axis ICC. Particularly for the probe shanks in the caudal part of the
posteroventral cochlear nucleus, the ordering of the depths of the centroids of activity induced in the central
nucleus of the IC corresponded precisely to the tonotopic organization of the cochlear nucleus. Overall, the
sites on the two shanks in the caudal part of the PVCN, rostral of the octopus cell region, spanned the
greatest range of acoustic frequency, from above 25 Khz to approximately 1 Khz.

Since the human and feline ventral cochlear nuclei contain similar cell types and the nuclei or both
species are of similar size and structure, these data demonstrate the potential for a central auditory
prosthesis using multisite silicon-substrate probes, and suggests the number and density of shanks and
individual stimulating sites that will be necessary to access the entire tonotopic gradient of the human ventral
CN.

On Dec 13, 2005 , the 6™ patient was implanted with an array of macroelectrodes in the lateral recess
and the array of penetrating microelectrodes. This hybrid implant is designated the penetrating ABI (PABI).
PABI patient #6 received the new revised model of the penetrating array with 10 stimulating sites, each with
increased surface area (8,000 um?) to allow use of a greater charge range. The implant’s device was
activated on Jan 15, 2006. The patient was unable to use the surface array due to intolerable non-auditory
side effects but 6 of the microelectrodes on the penetrating array provided auditory percepts over a full range
of loudness without side effects. Data from this patient will be presented in the next quarterly report.

In a testing session in December 2005, in Verona, Italy, data were obtained on temporal integration
and thresholds of auditory percepts as a function of stimulus pulse phase duration, from 9 patients with the
surface type of auditory brains implants (ABI’s). The first patient with a surface ABI device placed on the
Inferior Colliculus (called the Inferior Colliculus Implant - ICl) also was tested. For most of these patients,
their deafness was of etiologies other than Type 2 Neurofibromatosis (NF2) and some had high levels of
speech recognition with the ABI. Testing focused on temporal measures on the hypothesis that speech
recognition and temporal resolution were linked. Previous test results show a significant correlation between
speech recognition and temporal modulation detection levels.



1: Work completed at HMRI
Evaluation of a multi-site silicon-substrate microstimulating array
INTRODUCTION

The workscope of our contract calls for the development of arrays of silicon substrate electrodes,
which should allow placement of many more electrode sites into the human cochlear nucleus than is
possible with discrete iridium microelectrodes. We are developing arrays for implantation into the human
cochlear nucleus that have 16 electrode sites distributed on 4 silicon shanks extending from an epoxy
superstructure that is 2.4 mm in diameter. We have been conducting animal studies using
microstimulating arrays with silicon substrate probes fabricated at the University of Michigan under the
direction of Design Engineer Jamille Hetke. Figure 1A shows a probe with 2 shanks and 8 stimulating sites,
that have been sputter-coated with iridium oxide. The 4 sites on each shank are 0.8mm to 1.7 mm below the
top of the shanks. Figure 1B shows an array containing 2 of the probes (4 shanks and 16 electrode sites)
extending from an epoxy superstructure that floats of the surface of the cochlear nucleus. The cable is
angled vertically, to accommodate the trans-cerebellar approach to the feline cochlear nucleus.

In principle, the silicon substrate array could provide improve functionality of a central auditory
prosthesis by affording highly localized stimulation of neuronal populations within the ventral cochlear
nucleus (VCN). This localized stimulation should allow precise and selective access to the tonotopic

Figure 1A Figure 1B

organization within each of the subdivisions of the cochlear nucleus (CN), but intranuclear microstimulation
will excite the axonal projections from the CN as well as the cell bodies, and also may depolarize the large
dendrites that may span auditory nerve terminal representing a range of acoustic frequencies.

In previous reports, we have described a method of quantifying the ability of the intranuclear
microstimulation to selectively activate the tonotopic organization of the lower auditory system, using current
source-sink density analysis of the evoked responses recorded in the contralateral inferior colliculus. The
tonotopic organization of the anteroventral and posteroventral CN is preserved in the projection from the CN
to the inferior colliculus. The iso-frequency laminae are oriented more-or-less perpendicular to the
dorsolateral-venteromedial axis of the central nucleus of the inferior colliculus (ICC) with lower acoustic
frequencies represented dorsally and high frequencies represented ventrally and medially (e.g. Semple and
Aitkins, 1979, Brown et al, 1997).In this report, we present results from a cat in which the microstimulating



array was implanted for 250 days.

METHODS
Array implantation

Microstimulating arrays are implanted chronically into the cochlear nucleus of your adult cats. Using
aseptic technique, the scalp is opened in a midline incision, and the muscles reflected. A small craniectomy
is made over the right occipital cortex and the bipolar recording electrode introduced into the rostral pole of
the rleft inferior colliculus. The reference electrode was dorsal to the colliculus. These electrodes are solid
100 um ss wire, with ~ 1 mm of the Teflon insulation removed for the tips.

To access the cochlear nucleus, a craniectomy is made over the right cerebellum, extending up to the
tentorium. The rostrolateral portion of the left cerebellum is aspirated using glass pipettes. The electrode
array is secured on the end of a vacuum wand, and thereby advanced into the cochlear nucleus. Before
releasing the vacuum, the array cable is fixed to the bone at the margin of the craniectomy, using medical
grade SuperGlue and the cavity was filled with gelfoam.

Recording of evoked responses

Periodically, the responses evoked from each of the microelectrodes in the left cochlear nucleus were
recorded via the electrode in the rostral pole of the right inferior colliculus. The stimulus was cathodic-first,
charge-balanced pulse pairs, each phase 150 Us in duration, ranging from 0 to 35 JA in amplitude. 512 to
2048 successive responses were averaged to obtain each averaged evoked response (AER). The response
growth functions, which represent the recruitment of the neural elements surrounding the microelectrode,
were generated for each stimulating electrode site in the PVCN, by plotting the amplitude of the first
component of each of the AERs evoked from that site, against the amplitude of the “probe” stimulus that
evoked the AER.

Multisite recording in the inferior colliculus

This terminal experiment was performed immediately before the cat was sacrificed. The procedure is
essentially as described in our previous quarterly reports ( QPR #4,5). The cat wae anesthetized with
Isoflurane and nitrous oxide, its heads fixed in a stereotaxic holder with hollow ear bars, to facilitate the
delivery of acoustic stimuli. A wide craniectomy was made over the left posterior cerebral hemisphere, and
the occipital pole of the cerebrum was removed by aspiration to expose the inferior colliculus. The cat was
transported to a double-walled acoustic isolation room with its head still fixed in the stereotaxic holder.
Throughout the remainder of the experiment, anesthesia was maintained with a mixture of 2-2.5% Isoflurane
and oxygen delivered by a self-breathing apparatus. Respiration rate and end-tidal CO, was monitored
continuously. Core body temperature was maintained at 37-39.0°C using a circulating water heating pad.
All sound-generating support equipment was located outside of the sound isolation room.

Microstimulation was applied in the cochlear nculeus via the chronically-implanted array. Multiunit
neuronal activity was recorded in the contralateral inferior colliculus using a 32-site silicon substrate probe
designed and fabricated by NeuroNexus, Inc., and modifed at HMRI to reduce bucking as their tips are
pressed against the pia overlying the IC. The recording sites are spaced 100 Um apart over a total span of 3
mm, which is somewhat less than the span of the domestic cat’s ICC along the dorsolateral-ventromedial
axis (approximately 4.5 mm). The recording probe was inserted into the inferior colliculus at an angle of 45°
from the vertical, and approximately along the tonotopic gradient.

For each penetration of the recording probe into the ICC, the response to acoustic stimuli was
recorded in the ICC. Tone bursts spanning 2.6 to 26 KHz (approximately 80 db spl, and 100 ms in
duration with a rise time of 10 ms) were used. Neuronal activity was recorded simultaneously from alternate
probe sites (16 sites, spaced 200 um apart) using the custom hardware and computer software described in
previous progress reports. Then, controlled-current, biphasic stimulus pulses (150 us/ph in duration at 50
Hz) were applied to the individual microelectrode sites in the cochlear nucleus. 1500 successive stimulus
pulses were delivered in sequence at 50 hz through each microstimulating sites in the CN. The stimulus



current was 10, 20 and 30 JA (1.5, 3 and 4.5 nC/phase). In the human patients implanted to date, the
thresholds for auditory percepts from the penetrating microelectrodes have been 1.7 nC/phase or less .

Data were analyzed offline used the custom software described in previous reports. First, a common
template of the compound evoked responses is generated by summing (averaging) 1500 successive
responses to the microstimulation. This template then is subtracted from each individual trace (response), in
order to suppress the large evoked response. Low- and high-frequency noise that is unique to each trace
then is removed by broadband filtering using a passband of 1000-8000 Hz (time domain convolution filter
using sinx/x kernels).

Neuronal action potentials (multi-unit activity) were detected as events that exceeded 3.5 x the rms
noise level of the recordings. Post-stimulus time (pst) histograms were generated from those events.
Contour (“topographic style”) maps of the evoked neuronal activity were generated from the set of 16 PST
histograms representing the neuronal activity recorded along the dorsolateral-ventromedial axis if the ICC.
On these contour maps, the ordinate is the distance above the deepest recording site in the ICC (at the tip of
the probe), and the abscissa is time after the stimulus pulse. The contour line labels represent the total
number of action potentials in each of the 100 us bins of the PST histograms from which the maps were
constructed. The maxima of the response to the acoustic tones of different frequencies is indicated near the
right y-axis. The centroid of each response map was computed as the means of the x and y co-ordinates
(depth and post-stimulus time). Since the computation of the mean can be seriously skewed by low-level
activity far from the main focus, the centroid were computed from map pixels in which the counts of the multi-
unit activity were 50% of more of the maximum.

Histology

At the conclusion of the mapping study, the cat was transitioned to deep Nembutal anesthesia and
perfused through the aorta with 1 L of phosphate-buffered saline followed by 1.5 L of 4% buffered formalin.
The array’s superstructure was then removed from the brainstem. During implantation of the array, the
lateral part of the cerebellum had been aspirated and the void was replaced by loose connective tissue. In
the process of dissecting the array cable from this tissue, all 4 of the silicon tines fractured from the epoxy
superstructure and remained in the fixed tissue. (We are developing our own version of the silicon probes
using the deep reactive ion etching process, which should preclude such fractures.) The cochlear nucleus
was embedded into paraffin and sectioned in the frontal plane at 8 um and the section stained with Cresyl
violet. The presence of the fractured probe shanks in the tissue did cause some disruption of the tissue
sections, but the anatomical locations of the 4 probes and the condition of the neurons and neuropil adjacent
to the tracks could be determined.

RESULTS

In the past quarter, terminal experiments were conduced on two cat, cn149 at 439 days after array
implantation and CN153, 253 days after implantation. In cat cn149, the array had rotated into a nearly
horizontal position, apparently due to downward pressure from the cable, which extended dorsally from the
array to the craniectomy. The orientation of the array in cat CN153 was essentially as when implanted, with
the silicon shanks oriented in a nearly dorso-ventral direction, and thus approximately along the tonotopic
gradient of the ventral nucleus. Thus the data from CN153 are more representative of the capabilities of a
chronically-implanted microstimulating array.

A sketch of the entire array is shown in the inset at the bottom of figure. Figures 2a shows the
upper part of the track of the caudal-lateral and nearly the entire track of the caudal-medial shanks passing
into the posteroventral cochlear nucleus of cat CN153. The dorsolateral surface of the nucleus has been
flattened by the array superstructure. The opaque entities are the shattered remnants of the silicon shanks.
The PVCN is identified as the region of multipolar and spherical cells rostral of the octopus cell region, and



without a laminated structure (Osen, 1969) Figure 2b shows normal-appearing neurons and neuropil within
100 um of the caudal-lateral shank. Figure 2c shows the tracks of the rostral-medial and rostral-lateral
shanks, 1.5 m rostral of the caudal shanks, entering the ventral cochlear nucleus, caudal of the entry zone of

the auditory nerve. Based on the cytoarchtecture, this appear to be the rostral part of the PVCN. Figure 2d
shows neurons near the track of the rostral-lateral shank.



Figure 2d. Neurons near rostral-medial shank
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Figure 2. Tracks of silicon shanks in the ventral cochlear nucleus of cat CN153.



Figure 3A, B show the response growth functions (RGFs) recorded from cat CN153 at 22 and 250
days after implantation of the microstimulating array in the cochlear nucleus. Each frame shows the
amplitude of the earliest component of the compound response evoked from the sites on a particular silicon
shank in the CN, the locations of which are shown in the inset at the bottom of the figure.

Between the 22nd and 250th day after implantation, the threshold and slope of the RGFs were quite
constant. The change in the relative slope and threshold of the responses from the various sites suggest
some ongoing movement of the array through the tissue. At autopsy, the array’s superstructure was seen to
have depressed the dorsolateral surface of the cochlear nucleus by about 0.5 mm. As noted previously, this
may be related to the small but continuous downward force exerted by the silicon encapsulated cable, which
in the cat model is routed dorsally from the array, up to its attachment on the bone at the edge of the
craniectomy. Silicone elastomer does absorb water in vivo, and tends to expand, causing the cable to
lengthen slightly. We have revised the cable design to include a dog leg segment that should absorb the
downward force as the cable lengthens slightly.
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Figure 3A. Response growth functions from
cat CN153, recorded at 22 and 250 days
after implantation of the stimulating array
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Frequency response maps recorded in the central nucleus of the inferior colliculus.

In the terminal experiment of cat 153, the 32-site recording probes was inserted into the IC at three
locations. Penetration 1 was rostral and the entry point was lateral in the IC, above the brachium of the
inferior colliculus. Penetrations 2 and 3 were more caudal, about midway along the rostral-caudal extent of
the central nucleus. The point of entry of penetration 2 on the dorsal surface of the IC was medial and that of
penetration 3 was lateral

Figure 4A, B, C show the response maps recorded during penetration 1 into the central nucleus of the
inferior colliculus while stimulating in the contralateral cochlear nucleus at 10, 20 or 30 JA. In each map, the
abscissa is the time after the start of the stimulus pulse, and the left-hand ordinate is the distance from the
tip of the 32-site recording probe. The response maxima to acoustic tone bursts of various frequencies are
plotted on the right ordinate. The map contour lines correspond to the iso-response contours, in units of the
number of action potential in each of the 100 us bins of the PST histograms from which the maps are
constructed. Particularly at the lowest stimulus amplitude, (10 JA) some of the maps did not contain a focus
of multiunit activity, and this condition is designated as “no focus.” In each panel, each column represents
the responses from the sites on one of the silicon shanks in the CN, and the rows correspond to the
stimulating sites on the shanks, with the response maps from the deepest sites in the CN at the top of the
panel and the responses from the shallower sites at the bottom. In penetration 1, the response foci spanned
a depth range greater than the 3-mm span of the recording sites, so in a second run, the recording probe
was advanced an additional 1 mm into the IC along the same track, and response evoked by the shallowest
stimulating sites in the CN was again recorded (Figure 4D, E, F). The response maps from penetrations 2
and 3 in the IC are shown in Figs. 5 & 6, respectively. Note that the response thresholds of most of the sites
were slightly higher in penetration 3, which the entered the IC from its mediolateral surface.

The depth coordinate of the centroid of the activity evoked in the IC are plotted as bars in Figure 7, for
each stimulating site in the CN and for each of the 3 penetrations into the IC. The range brackets for each
bar are the standard deviation of the span in depth of the activity focus, and provide an index of the
dispersion over depth in the ICC of the neuronal activity evoked from each site in the CN and the overlap of
the activity evoked from adjacent sites. The maps of penetration 1 were acquired with the tip of the
recording probe at two different depths, and the left-hand ordinate is with respect to the shallower
penetration. For the caudal-lateral and caudal-medial shanks, the centroids progress regularly from deep to
shallow in the IC as the site of the microstimulation moves from shallow to deep in the PVCN. This
progression is seen most clearly in the data from penetration 3. Each of the sites on the caudal-medial
shank evoked responses deeper in the IC (corresponding to higher acoustic frequencies) than the
corresponding site on the caudal-lateral shank. This is as expected, since the array was inserted into the
dorsolateral wall of the cochlear nucleus, and thus would be expected to traverse the isofrequency lamina of
the PVCN at an oblique angle (Quarterly Progress Reports #4 & #5). Together, the 8 sites on the caudal
shanks in the PVCN spanned a range of acoustic frequencies from greater than 25 KHz to approximately 1
KHz. For the 2 rostral shanks, the regular progression of the centroids from deep to shallow in the IC was
seen only for penetration 3. In penetration 1, the response maps from stimulating site 1 on the rostral-lateral
shank was distributed over a range of depths in the IC. Similarly, in penetration 2, the response map for
stimulating site 7 on the rostral-lateral shank, and for site 2 and 6 on the rostral-medial shank, were
distributed over a range of depths in the IC (Figure 4). There are two possible explanations for this. The
distribution of the response evoked from a particular site in the CN would be recorded over a larger range of
depths in the IC if we were recording action potentials from axons projecting out of the central nucleus and
also from their cells of origin in a particular isofrequency lamina in the IC. A second possibility is that some
of the stimulating sites on the rostral shanks were exciting neurons representing a wider range of acoustic
frequencies. Since the thresholds and depth spans of the activity foci varied for the different penetrations
into the ICC, this explanation also imply that the neural activity evoked from a particular location in the CN
does not project uniformly to all parts of an particular isofrequency lamina in the ICC.

DISCUSSION
The results described above illustrate the capacity of a microstimulating array implanted chronically in



the feline cochlear nucleus to access the tonotopic gradient of the ventral cochlear nucleus. The human and
feline ventral cochlear nuclei contain similar cell types, and the nuclei of both species are of similar size and
architecture, so these data demonstrate the potential for a central auditory prosthesis using multisite silicon
substrate probes. The findings also suggest the number and density of shanks and individual stimulating
sites on each shank that will be necessary to access the entire tonotopic gradient of the human CN. Figure
6 illustrates how the stimulating sites on each of the two caudal shanks in the caudal part posteroventral
cochlear nucleus work in synergy with the sites on the adjacent shank to provide access to 8 distinctive
locations along the tonotopic gradient of the ventral nucleus, while also spanning a wide range of acoustic
frequencies. The sites on the rostral shanks contribute additional points of access to the tonotopic gradient.
However, the response maps indicate that the neuronal activity induced by these sites is spread over a
greater part of the tonotopic gradient.

The findings described in this and previous reports convey only a rudamentary description of the
capacity of a high-density microstimulating array to convey information into the central auditory system.
What is most needed is a multisite, multishank recording probe that can be implanted chronically into the
inferior colliculus, with a linear span greater than the dorso-ventral span of the ICC. This will allow
comprehensive studies using a variety of stimulus frequencies, amplitudes and temporal patterns, with the
animal unanesthetized or more likely, very lightly anesthetized. We currently have such a probe under
development. In view of previous studies by other investigators that have suggested the inhomogeneity of
the isofrequency lamina of the ICC, our own findings suggesting the same are not surprising, but they do
complicate the problem of implanting a chronic recording probe into the feline ICC, since only the most
rostral part of the IC ( e.g, penetration 1 in this study) extends beyond the rostral edge of the ossified
tentorium. Thus the entry point for penetrations 2 and 3 in the present study required removal of part of the
tentorium, which will be difficult in animals designated for long-term survival.
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Figure 4A. Penetration 1 into the IC, stimulus = 10 JA. (point of entry of recording electrode in rostral-lateral

IC)
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Figure 4B . Penetration 1, stimulus= 20 A
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Figure 4C. Penetration 1, stimulus = 30 JA.




caudal-lateral shank

rostral-medial

rostral-lateral

caudal-medial

Not acquired

not acquired

not acquired

not acquired

not acquired

not acquired

not acquired

not acquired

not acquired

cat cn153 Penetration 1b,
file 153064.epa, 10 pA, stim electrode 10

cat cn153 Penetration 1b,
file 153065.epa, 10 pA, stim electrode 11

cat cn153 Penetration 1b,
file 153066.epa, 10 pA, stim electrode 12

time after stimulus (ms)

] 0 ] 0 ]
e — 47kHz e % 47kHz T 4T7kHz
centroids: 0 centroids: s
2 time=3.7 ms P 7.4 Knz 2 time=4.0 ms b 7.4 Knz 2 centroids: 7.4 Knz
© 2500 dabove tip=1231 ym 80 -| 94Kz © 2500 dabove tip=1752 ym pos -| 94Kz © 2500 time=3.9ms -| 9.4kHz
= 13 Knz = 13 Knz = d above ip=1044 ym 0 13 Knz
£ £ £ — %
o 2000 - | 16 knz o 2000 - | 16 knz o 2000 - — 100 | 16 knz
3 E £ 150
2 20.5khz 2 20.5knz 2 2 20.5knz
] ] i 1 — 250 ]
3 15w 3 1w 3 1500
a a k)
© © ©
o 1 25 kHz o ] | 25wz o ] | 25wz
g 1000 g 1000 8 1000
c c c
£ g g
B 500+ B 500+ R B 500+ R
© © °
0 T T T T 0 T T T T 0 T T T T
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
time after stimulus (ms) time after stimulus (ms) time after stimulus (ms)
cat cn153 Penetration 1b, cat cn153 Penetration 1b,
NO focus file 153068.epa, 10 A, stim electrode 14 NO focus file 153079.epa, 10 A, stim electrode 16
— 3000 4 — 3000 { centroids: o
£ 4T kHz 15 time=4.1ms — 20 47 kHz
E centroids: 74Knz ) d above tip=643 pm — 40 74 Knz
1 time=3.7ms | 9.4kHz 2500 - 60 | 9.4kHz
o 0 s o
Q d above ip=948 pm 2 8
c P v 13 Khz c o 13 Khz
- = — 120
q 2000 -| 16 knz o 20007 — 140 °| 18 Khz
E = — 160
o — 180
2 oo d 205khz 3 1500 | 205z
° A
2
| [ «©
1 | |25k o 1 25 kHz
8 1000 2 8 1000
c c
g g
® 500 B 500
© ©
0 : : : : 0 T T T T
0 2 4 6 8 10 0 2 4 6 8 10

time after stimulus (ms)

Figure 4D. stimulus = 10 JA ( Still penetration 1, but tip of recording electrode 1 mm deeper in the IC)
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Figure 4E, stimulus =20 A
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Figure 5A, Penetration 2. stimulus =10 JA (Point of entry of recording electrode in medial-medial IC)
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Figure 5B, Penetration 2. stimulus=20 pA
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Figure 5C, Penetration 2, stimulus=30 YA
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Figure 6A, Penetration 3, stimulus = 10 YA (recording electrodes entered medial-lateral I1C)
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Figure 6B, penetration 3, 20 JA
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Figure 6C, penetration 3, stimulus= 30 A
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Figure 7. CAT CN153. The locations of the centroids of the maps of multi-unit activity in the IC evoked from
each of the stimulating sites in the CN (bars) and the standard deviation of the span of the activity above and
below the centroid (range brackets), for each of the 3 penetrations into the IC



2: Summary of work completed at the House Ear Institute

On Dec 13, 2005, the 6™ patient was implanted with an array of macroelectrodes in the lateral recess
and the array of penetrating microelectrodes. This hybrid implant is designated the penetrating ABI (PABI).
PABI patient #6 received the new revised model of the penetrating array with 10 stimulating sites, each with
increased surface area (8,000 um?) to allow use of a greater charge range. The implant’s device was
activated on Jan 15, 2006. The patient was unable to use the surface array due to intolerable non-auditory
side effects but 6 of the microelectrodes on the penetrating array produced auditory percepts over a full
range of loudness without side effects. Data from this patient will be presented in the next quarterly report.

Testing of patients in Verona, Italy
In a testing session in December 2005,data were obtained on temporal integration and thresholds as
a function of pulse phase duration from 9 patients with the surface type of auditory brains implants (ABI’s).
The first patient with a surface ABI device placed on the Inferior Colliculus (called the Inferior Colliculus
Implant - ICI) also was tested. For most of these patients, their deafness was of etiologies other than Type 2
Neurofibromatosis (NF2) and some had high levels of speech recognition with the ABI. Testing focused on
temporal measures on the hypothesis that speech recognition and temporal resolution were linked.
Previous test results show a significant correlation between speech recognition and temporal modulation
detection levels (Fu et al., 2002; Colletti and Shannon, 2005).
Temporal integration measured threshold levels as a function of the duration of the stimulus burst.
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Figure 9

Temporal integration measures the trade-off between stimulus level at threshold and the length of the burst.
If energy was integrated perfectly over the duration of stimulation, then a burst that was twice as long would
require a stimulation level with half of the energy. The temporal integration function shows the time constant
and magnitude of this trade off. Stimulation rate was set at 1000 pps and thresholds were measured for
bursts ranging from 1 ms to 1000 ms duration. Results from six non-NF2 ABI patients presented in Figure 8
show little change in threshold as a function of burst duration. For most patients thresholds only increased
by 1.5-2 dB as burst duration was decreased from 100 ms to 1 ms (single biphasic pulse). This result is
similar to the lack of temporal integration observed in cochlear implant and ABI patients with NF2. Previous
models (Shannon, 1990) suggest that the lack of temporal integration is due to the fact that the integration
occurs at a perceptual level, i.e. twice as much "perceptual energy" is necessary to compensate for a
stimulus that is half as long. But due to the expansive nature of the loudness mapping function for electrical
stimulation, only a small amount of electrical current increase is necessary to double the perceived
loudness. Thus, although there is a trade-off between perceived magnitude and stimulation duration, when



plotted in terms of dB at the input, threshold rises only slightly in terms of dB as stimulus duration is
shortened.

Threshold levels as a function of pulse phase duration may indicate the size and type of neurons
activated by the electrical stimulation. Electrically, neurons have a specific capacitance derived from their
cross sectional diameter (conductive fluid surrounded by insulating myelin). Threshold charge per phase
will decrease with decreasing pulse phase duration until the combined phases are shorter than the time
constant of the cell membrane, at which point the second phase is able to cancel electrical charge still held
by the membrane. Axons typically have shorter time constants (50-100 Us) than cell bodies (200us-10 ms).
One possibility for the difference in performance between NF2 and non-tumor ABI patients is in the
differential survival of large vs small cells in the cochlear nucleus. We measured threshold as a function of
pulse phase duration for a low pulse rate (15 pps)in five non-tumor ABI patients. The separation of phases
in each biphasic pulse (inter phase interval: IP1) was 45 us. Figure 9 shows that threshold decreases with
phase duration down to 20 us, suggesting that the ABI was activating small fibers rather than dendrites or
cell bodies. Similar measures will be made for NF2 ABI patients, Cl patients for comparison, and for
patients with electrodes on the Inferior Colliculus (ICl), both surface and penetrating. This comparison may
show a difference in the effective time constant which would indicate differential survival of selective nerve
types in the CN following NF2 tumor removal. The comparison with Cl and ICI should give us an idea of
how sensitive this measure is. Presumably cochlear implants stimulate a mix of dendritic peripheral
processes of the auditory nerve as well as cell bodies in the spiral ganglion, while ICI electrodes would
activate a mix of cell types in the IC. It is not clear at present if this measure is sensitive enough to
differentiate between NF2 and non-tumor ABI patients. The data in Figure 9 suggest activation of axons. If
NF2 results show a significantly longer time constant it might indicate activation of cell bodies directly.

Work in the Next Quarter (Jan-Feb-Mar 2006)

In the next quarter of this contract we anticipate implantation of 3-4 additional PABI patients.
Modifications have been made to the penetrating electrode to add two additional stimulating points by
ablating insulation from the stabilizing pins at 2.5 mm from the base.
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